
hhh

Tool Support for
Data Structures

J. Grosch

hhh

hhh
GESELLSCHAFT FÜR MATHEMATIK
UND DATENVERARBEITUNG MBH

FORSCHUNGSSTELLE FÜR
PROGRAMMSTRUKTUREN
AN DER UNIVERSITÄT KARLSRUHE

hhh

Project

Compiler Generation

hhh

Tool Support for Data Structures

Josef Grosch

Nov. 8, 1989

hhh

Report No. 17

Copyright 1989 GMD

Gesellschaft für Mathematik und Datenverarbeitung mbH
Forschungsstelle an der Universität Karlsruhe

Vincenz-Prießnitz-Str. 1
D-7500 Karlsruhe

1

Tool Support for Data Structures

Josef Grosch
GMD Forschungsstelle an der Universität Karlsruhe

Vincenz-Prießnitz-Str. 1, D-7500 Karlsruhe, Germany
Tel: +721-6622-26

E-Mail: grosch@karlsruhe.gmd.de

Abstract Linked records are a general mechanism to build data structures like lists, trees, and
graphs. Most high-level programming languages only provide the definition of record types, an
operator for component selection, and allocation of record storage. We propose to specify com-
plete graph structures by context-free grammars. A tool can be used to transform such a
specification into a set of record type declarations and program code for features like denotations
for record values, input and output for record values and complete graphs, or interactive
browsers for data structures. We describe such a tool called ast (generator for abstract syntax
trees), its specification language, the advantages of this approach, and our current experiences.
Currently, the main application is the specification of attributed abstract syntax trees within com-
pilers. We finally discuss the relationship to related work.

1. Introduction

Linked records are a general mechanism to build data structures like lists, trees, and graphs.
Most high-level programming languages only provide the definition of record types, an operator
for component selection, and allocation of record storage. Therefore, the treatment of compound
data types in most high-level languages can be considered to be quite "low-level". Exceptions
are very-high-level languages like e. g. SETL [SDD86] which provides denotations (aggregates)
and input/output operations for values of all data types, even compound ones like tuples, arrays,
or sets.

We propose to raise the level of conventional languages somewhat by improving the
declarations of data structures and by extending the set of operations available for compound
data types. Declarations should not merely describe single records but also the relationships
among them. Additional operations include denotations for record values (aggregates) as well as
input and output for record values or complete data structures like graphs. Moreover, it is desir-
able to have commonly used operations for general data structures. These could range from rev-
ersing the elements of lists to interactive browsers for graphs which allow the inspection of the
values of all fields of the nodes in a user-driven dialogue.

The structure of graphs can be specified conveniently by context-free grammars. A gram-
mar rule describes a node type and a nonterminal a set of node types.

The above features could be incorporated into existing or future languages. This would of
course be the kind of realization to prefer. However, today we have to live with languages like
Modula-2 or C without those features. Therefore, a tool could produce a program module written
in the concrete target language which defines the specified data structure by a set of record
declarations and which implements the additional operations by generated procedures. This has
the advantage that no changes to existing languages are necessary.

This paper presents such a tool called ast: generator for abstract syntax trees [Gro91]. The
tool’s name is derived from its main application in compiler construction where it is used for
attributed abstract syntax trees. ast is implemented in Modula-2 as well as in C under UNIX and
generates Modula-2 or C source modules. We describe the specification language of the tool, its
output, its advantages, and our experiences. We also discuss related approaches. In the

2

following we talk only about the data structure directed graph because lists and trees are special
cases thereof. The examples use Modula-2 as target language.

2. Specification Language

The structure of directed graphs is specified by a formalism based on context-free gram-
mars. However, we use the classical terminology for graphs in defining the specification
language. Its relationship to context-free grammars is discussed later.

2.1. Node Types

A directed graph consists of nodes. A node may be related to other nodes in a so-called
parent-child relation. Then the first node is called a parent node and the latter nodes are called
child nodes. Nodes without a parent node are usually called root nodes, nodes without children
are called leaf nodes.

The structure and the properties of nodes are described by node types. Every node belongs
to a node type. A specification of a graph describes a finite number of node types. A node type
specifies the names of the child nodes and the associated node types as well as the names of the
attributes and the associated attribute types.

2.2. Children

Children are distinguished by selector names which have to be unambiguous within one
node type. The children are of a certain node type.

Example:

If = Expr: Expr Then: Stats Else: Stats .
While = Expr: Expr Stats: Stats .

The example introduces two node types called If and While. A node of type If has three children
which are selected by the names Expr, Then, and Else. The children have the node types Expr,
Stats, and Stats. If a selector name is equal to the associated name of the node type it can be
omitted. Therefore, the above example can be abbreviated as follows:

If = Expr Then: Stats Else: Stats .
While = Expr Stats .

2.3. Attributes

As well as children, every node type can specify an arbitrary number of attributes of arbi-
trary types. Like children, attributes are characterized by a selector name and a certain type. The
descriptions of attributes are enclosed in brackets. The attribute types are given by names taken
from the target language. Missing attribute types are assumed to be int or INTEGER depending
on the target language (C or Modula-2). Children and attributes can be given in any order. The
type of an attribute can be a pointer to a node type. In contrast to children, ast does not follow
such an attribute during a graph traversal. All attributes are considered to be neither tree nor
graph structured. Only the user knows about this fact and therefore he/she should take care.

Example:

Binary = Lop: Expr Rop: Expr [Operator: INTEGER] .
Unary = Expr [Operator] .
IntConst = [Value] .
RealConst = [Value: REAL] .

3

2.4. Extensions

To allow several alternatives for the types of children an extension mechanism is used. A
node type may be associated with several other node types enclosed in angle brackets. The first
node type is called base or super type and the latter types are called derived types or subtypes.
A derived type can in turn be extended with no limitation of the nesting depth. The extension
mechanism induces a subtype relation between node types. This relation is transitive. Where a
node of a certain node type is required, either a node of this node type or a node of a subtype
thereof is possible.

Example:

Stats = <
If = Expr Then: Stats Else: Stats .
While = Expr Stats .

> .

In the above example Stats is a base type describing nodes with neither children nor attri-
butes. It has two derived types called If and While. Where a node of type Stats is required,
nodes of types Stats, If, and While are possible. Where a node of type If is required, nodes of
type If are possible, only.

Besides extending the set of possible node types, the extension mechanism has the property
of extending the children and attributes of the base type. The derived types possess the children
and attributes of the base type. They may define additional children and attributes. In other
words they inherit the structure of the base type. The selector names of all children and attri-
butes in an extension hierarchy have to be distinct. The syntax has been designed this way in
order to allow single inheritance, only.

Example:

Stats = Next: Stats [Position: tPosition] <
If = Expr Then: Stats Else: Stats .
While = Expr Stats .

> .

Nodes of type Stats have one child selected by the name Next and one attribute named
Position. Nodes of type While have three children with the selector names Next, Expr, and Stats

and one attribute named Position.

A node of a base type like Stats usually does not occur in an abstract syntax tree for a com-
plete program. Still, ast defines this node type. It could be used as placeholder for unexpanded
nonterminals in incomplete programs which occur in applications like syntax directed editors.

2.5. Modules

The specification of node types can be grouped into modules. This feature can be used to
structure a specification or to extend an existing one. If a node type has already been declared
the given children, attributes, and extensions are added to the existing declaration. Otherwise a
new node type is introduced.

Example:

MODULE my_version

Stats = [Env: tEnv] < /* add attribute */
While = Init: Stats Terminate: Stats . /* add children */
Repeat = Stats Expr . /* add node type */

> .

END my_version

4

2.6. Properties

Children and attributes can be given several properties by attaching keywords like INPUT
or REVERSE. Input attributes receive a value at node-creation time, whereas non-input attri-
butes may receive their values at later times. Input attributes are included into the parameter list
of the node constructor procedures (see section 3). As a shorthand, every list of children and
attributes may contain the symbol ’->’ to separate input from non-input items. The property
reverse specifies how lists should be reversed. It is discussed in the next section.

2.7. Reversal of Lists

Recursive node types like Stats in the abstract grammar of the example below describe lists
of subtrees. There are some cases where it is convenient to be able to easily reverse the order of
the subtrees in a list. The facility provided by ast is a generalization of an idea presented in
[Par88].

Using LR parsers, one might be forced to parse a list using a left-recursive concrete gram-
mar rule because of the limited stack size. The concrete grammar rules of the following exam-
ples are written in the input language of the parser generator lalr [Gro88, GrV88] which is simi-
lar to the one of YACC [Joh75]. The node constructor procedures within the semantic actions
are the ones provided by ast (see section 3).

Example:

concrete grammar (with tree building actions):

Stats: {$$:= mStats0 (); } .
Stats: Stats Stat ’;’ {$$:= mStats1 ($2, $1);} .
Stat : WHILE Expr DO Stats END {$$:= mWhile ($2, ReverseTREE ($4));} .

abstract grammar:

Stats = <
Stats0 = .
Stats1 = Stat Stats REVERSE .

> .

Without the call of the procedure ReverseTREE and the property REVERSE a parser using the
above concrete grammar would construct statement lists where the list elements are in the wrong
order, because the last statement in the source would be the first one in the list. The WHILE rule
represents a location where statement lists are used.

To easily solve this problem, ast can generate a procedure to reverse lists. The
specification has to describe how this should be done. At most one child of every node type may
be given the property reverse. The generated list reversal procedure ReverseTREE then reverses
a list with respect to this indicated child. The procedure ReverseTREE has to be called exactly
once for a list to be reversed. This is the case at the location where a complete list is included as
subtree (e. g. in a WHILE statement).

2.8. Target Code

An ast specification may include sections containing target code. Target code is code writ-
ten in the target language which is copied unchecked and unchanged to certain places in the gen-
erated module. Target code can be used for import or export statements, for the declaration of
global variables or procedures, and for statements to initialize or finalize the declared data struc-
tures.

5

2.9. Type Specific Operations

Procedures generated by ast apply seven operations to attributes: initialization, finalization,
ascii read and write, binary read and write, and copy (see Table 1). Initialization is performed
whenever a node is created. It can range from assigning an initial value to the allocation of
dynamic storage or the construction of complex data structures. Finalization is performed
immediately before a node is deleted and may e. g. release dynamically allocated space. The
read and write operations enable the readers and writers to handle the complete nodes including
all attributes, even those of user-defined types. The operation copy is needed to duplicate values
of attributes of user-defined types. By default, ast just copies the bytes of an attribute to dupli-
cate it. Therefore, pointer semantics is assumed for attributes of a pointer type. If value seman-
tics is needed, the user has to take care about this operation.

The operations are type specific in the sense that every type has its own set of operations.
All attributes having the same type (target type name) are treated in the same way. Chosing dif-
ferent type names for one type introduces subtypes and allows to treat attributes of different sub-
types differently. Type operations for the predefined types of a target language are predefined
within ast. For user-defined types, ast assumes default operations (see Table 1). The procedures
yyReadHex and yyWriteHex read and write the bytes of an attribute as hexadecimal values. The
procedures yyGet and yyPut read and write the bytes of an attribute unchanged (without conver-
sion). The operations are defined by a macro mechanism. TYPE is replaced by the concrete
type name. a is a formal macro parameter referring to the attribute. It is possible to redefine the
operations by including new macro definitions written in cpp syntax.

Table 1: Type specific operations

default macro
operation macro name C Modula-2ii

initialization beginTYPE(a)
finalization closeTYPE(a)
ascii read readTYPE(a) yyReadHex (& a, sizeof (a)); yyReadHex (a);
ascii write writeTYPE(a) yyWriteHex (& a, sizeof (a)); yyWriteHex (a);
binary read getTYPE(a) yyGet (& a, sizeof (a)); yyGet (a);
binary write putTYPE(a) yyPut (& a, sizeof (a)); yyPut (a);
copy copyTYPE(a)cc

c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c

3. Generated Program Module and its Use

A specification as described in the previous section is translated by ast into a program
module consisting of a definition and an implementation part. Only the definition part is
sketched here. The definition part contains primarily type declarations to describe the structure
of the graphs and the headings of the generated procedures.

Every node type is turned into a constant declaration and a record (struct) declaration. That
is quite simple, because node types and record declarations are almost the same concepts except
for the extension mechanism and some shorthand notations. All these records become members
of a variant record (union) used to describe graph nodes in general. This variant record has a tag
field called Kind which stores the code of the node type. A pointer to the variant record is a type
representing graphs. Like all generated names, this pointer type is derived from the name of the
specification. Table 2 briefly explains the exported objects. Their generation is requested by
simple command line options.

The parameters of the procedures m<node type> have to be given in the order of the input

attributes in the specification. Attributes of the base type (recursively) precede the ones of the

6

Table 2: Generated objects and procedures

object/procedure descriptionii
<node type> named constant to encode a node type
tTREE pointer type, refers to variant record type describing all node types
TREERoot variable of type tTREE, can serve as root

(additional variables can be declared)ii
MakeTREE node constructor procedure without attribute initialization
n<node type> node constructor procedures with attribute initialization

according to the type specific operations
m<node type> node constructor procedures with attribute initialization

from a parameter list for input attributes
ReleaseTREE node or graph finalization procedure,

all attributes are finalized, all node space is deallocated
ReleaseTREEModule deallocation of all graphs managed by a module
WriteTREENode ASCII node writer procedure
ReadTREE ASCII graph reader procedure
WriteTREE ASCII graph writer procedure
GetTREE binary graph reader procedure
PutTREE binary graph writer procedure
ReverseTREE procedure to reverse lists
TraverseTREETD top down graph traversal procedure (reverse depth first)
TraverseTREEBU bottom up graph traversal procedure (depth first search)
CopyTREE graph copy procedure
CheckTREE graph syntax checker procedure
QueryTREE graph browser procedure
BeginTREE procedure to initialize user-defined data structures
CloseTREE procedure to finalize user-defined data structurescc

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

derived type. The procedures TraverseTREETD and TraverseTREEBU visit all nodes of a
graph. At every node a procedure given as parameter is executed. An assignment of a graph to a
variable of type tTREE can be done in two ways: The usual assignment operators ’=’ or ’:=’
yield pointer semantics. The procedure CopyTREE yields value semantics by duplicating a given
graph.

The procedure QueryTREE allows to browse a graph and to inspect one node at a time. A
node including the values of its attributes is printed on standard output. Then the user is
prompted to provide one of the following commands from standard input:

parent display parent node
quit quit procedure QueryTREE
<selector> display specified child

Unfortunately, the typing rules of ast (see section 2.4.) can not be mapped to every target
language. For example the subtype relation can not be expressed in Modula-2. A subtype has to
be compatible with its base type. Two subtypes of one base type have to be incompatible. As a
compromise, all node types without base types could be implemented by different pointer types.
Extensions of a base type would be mapped to the same pointer type as the base type. This solu-
tion would implement half of ast’s typing rules through static typing of the target language. For
a full implementation, target languages with subtypes such as Oberon or C++ are necessary.

7

The current implementation of ast omits static type checking. It offers dynamic type check-
ing through the procedure CheckTREE. This procedure has to be called explicitly to check if a
graph is properly typed. In case of typing errors the involved parent and child nodes are printed
on standard error.

The remainder of this section explains how to use the generated objects, presents the
advantages of this approach, and reports early experience with the method.

Trees or graphs are created by successively creating their nodes. The easiest way is to call
the constructor procedures m<node type>. These combine node creation, storage allocation, and
attribute assignment. They provide a mechanism similar to record aggregates. Nested calls of
constructor procedures allow programming with (ground) terms as in Prolog or LISP. The type
of a node can be retrieved by examination of the predefined tag field called Kind. Children and
attributes can be accessed using two record selections. The first one states the node type and the
second one gives the selector name of the desired item.

Example:

abstract syntax:

Expr = [Position: tPosition] <
Binary = Lop: Expr Rop: Expr [Operator: INTEGER] .
Unary = Expr [Operator] .
IntConst = [Value] .
RealConst = [Value: REAL] .

> .

tree construction by a term:

CONST Plus = 1;
VAR t: tTREE; Pos: tPosition;

t := mBinary (Pos, mIntConst (Pos, 2), mIntConst (Pos, 3), Plus);

tree construction during parsing:

Expr: Expr ’+’ Expr {$$.Tree := mBinary ($2.Pos, $1.Tree, $3.Tree, Plus);} .
Expr: ’-’ Expr {$$.Tree := mUnary ($1.Pos, $2.Tree, Minus); } .
Expr: IntConst {$$.Tree := mIntConst ($1.Pos, $1.IntValue); } .
Expr: RealConst {$$.Tree := mRealConst ($1.Pos, $1.RealValue); } .

access of tag field, children, and attributes:

CASE tˆ.Kind OF
| Expr : ... tˆ.Expr.Position ...
| Binary: ... tˆ.Binary.Operator ...

... tˆ.Binary.Lop ...
| Unary : ... tˆ.Unary.Exprˆ.Expr.Position ...
END;

ast can be used not only for abstract syntax trees in compilers but for every tree or graph
like data structure. In general the data structure can serve as interface between phases within a
program or between separate programs. In the latter case it would be communicated via a file
using the generated reader and writer procedures.

Generated tree respectively graph modules have successfully been used in compilers e. g.
for MiniLAX [WGS89] and UNITY [Bie89] as well as for a Modula -> C translator [Mar90].
The modules for the internal data structure of ast itself and the attribute evaluator generator ag

[Gro89] have also been generated by ast. Moreover, the symbol table module of the Modula ->
C translator has been generated.

8

The advantage of this approach is that it saves considerably hand-coding of trivial declara-
tions and operations. Table 3 lists the sizes (numbers of lines) of some specifications and the
generated modules. Sums in the specification column are composed of the sizes for the
definition of node types and for user-supplied target code. Sums in the tree module column are
composed of the sizes for the definition part and for the implementation part. The large sizes of
the tree modules are due to the numerous node constructor procedures and from the graph
browser in the case of ag. These procedures proved to be very helpful for debugging purposes
as they provide readable output of complex data structures.

Table 3: Examples of ast applications

application specification tree moduleii
MiniLAX 56 202 + 835 = 1037
UNITY 210 207 + 962 = 1169
Modula -> C 240 583 + 3083 = 3666
ag 78 + 347 = 425 317 + 1317 = 1634
Symbol table 82 + 900 = 982 399 + 1431 = 1830c

c
c
c
c
c
c

c
c
c
c
c
c
c

The realization of the presented concepts by a preprocessor leads to the mixture of gen-
erated and hand-written program code. The debugging of such a program may be problematic.
Of course, the pure generated parts are correct. With the possibility to insert target code and type
specific operations errors might be introduced. These are detected by the compiler or during run
time and reported with respect to the generated program code instead of the specification. There-
fore, errors in this situation are hard to debug. This problem could be solved by incorporating the
concepts into a language instead of implementing them by a preprocessor.

4. Related Research

4.1. Variant Records

ast specifications and variant record types like in Pascal [JWM85] or Modula-2 [Wir85] are
very similar. Every node type in an ast specification corresponds to a single variant. In the gen-
erated code, every node type is translated into a record type. All record types become members
of a variant record type representing the type for the graph nodes.

The differences are the following: ast specifications are shorter than directly hand-written
variant record types. They are based on the formalism of context-free grammars (see section
below). The generator ast automatically provides operations on record types which would be
simple but voluminous to program by hand. The node constructor procedures allow program-
ming with record aggregates and provide dynamic storage management. The reader and writer
procedures supply input and output for record types and even for complete linked data structures
such as trees and graphs.

4.2. Type Extensions

Type extensions have been introduced with the language Oberon [Wir88a, Wir88b,
Wir88c]. The extension mechanism of ast is basically the same as in Oberon. The notions
extension, base type, and derived type are equivalent (see Table 4). Type tests and type guards

are not supported by ast. They can be programmed by inspecting the tag field of a node. ast

does not provide assignment of subtypes to base types in the sense of value semantics or a pro-
jection, respectively. The tool can be seen as a preprocessor providing type extensions for
Modula-2 and C.

9

The second example in section 2.4. illuminates the relationship between ast and Oberon.
The node type Stats is a base type with two fields, a child and an attribute. It is extended e. g. by
the node type While with two more fields representing children.

4.3. Context-Free Grammars

As already mentioned, ast specifications are based on context-free grammars. ast

specifications extend context-free grammars by selector names for right-hand side symbols, attri-
butes, the extension mechanism, and modules. If the features are omitted we basically arrive at
context-free grammars. This holds from the syntactic as well as from the semantic point of view.
The names of the node types represent both terminal or nonterminal symbols and rule names.
Node types correspond to grammar rules. The notions of derivation and derivation tree can be
used similarly in both cases. The selector names can be seen as syntactic sugar and the attributes
as some kind of terminal symbols. The extension mechanism is equivalent to a shorthand nota-
tion for factoring out common rule parts in combination with implicit chain rules.

Again referring to the second example in section 2.4., Stats corresponds to a nonterminal.
There are two rules or right-hand sides for Stats which are named If and While. The latter would
be regarded as nonterminals, too, if a child of type If or While would be specified.

4.4. Attribute Grammars

Attribute grammars [Knu68, Knu71] and ast specifications are based on context-free gram-
mars and associate attributes with terminal and nonterminals symbols. Additionally, ast allows
attributes which are local to rules. As the structure of the tree itself is known and transparent,
subtrees can be accessed or created dynamically and used as attribute values. The access of the
right-hand side symbols uses the selector names for symbolic access instead of the grammar
symbols with an additional subscript if needed. There is no need to map chain rules to tree
nodes because of the extension mechanism offered by ast. Attribute evaluation is outside the
scope of ast. This can be done either with the attribute evaluator generator ag [Gro89] which
understands ast specifications extended by attribute computation rules and processes the trees
generated by ast or by hand-written programs that use an ast generated module. In the latter case
attribute computations do not have to obey the single assignment restriction for attributes. They
can assign a value to an attribute zero, once, or several times.

4.5. Interface Description Language (IDL)

The approach of ast is similar to the one of IDL [Lam87, NNG89]. Both specify attributed
trees as well as graphs. Node types without extensions are called nodes in IDL and node types
with extensions (base types) are called classes. ast has simplified this to the single notion of a
node type. Attributes are treated similarly in both systems. Children and attributes are both
regarded as attributes, as structural and non-structural ones, with only little difference in
between. Whereas IDL in general allows multiple inheritance of attributes, ast is restricted to
single inheritance and uses the notion extension instead [Wir88a]. IDL knows the predefined
types INTEGER, RATIONAL, BOOLEAN, STRING, SEQ OF, and SET OF. It offers special
operations for the types SEQ OF and SET OF. ast really has no built in types at all, it uses the
ones of the target language and has a table containing the type specific operations e. g. for read-
ing and writing. Both ast and IDL allow attributes of user-defined types. In ast the type specific
operations for predefined or user-defined types are easily expressed by macros using the target
language directly. IDL offers an assertion language whereas ast does not. IDL provides a
mechanism to modify existing specifications. The module feature of ast can be used to extend
existing specifications. From ast, readers and writers are requested with simple command line
options instead of complicated syntactic constructs. ast does not support representation
specifications, because representations are much more easily expressed using the types of the

10

target language directly. Summarizing, we consider ast to have a simpler specification method
and to generate more powerful features like aggregates, reversal of lists, and graph browsers.

4.6. Object-Oriented Languages

The extension mechanism of ast is exactly the same as single inheritance in object-oriented
languages like e. g. Simula [DMN70] or Smalltalk [Gol84]. The hierarchy introduced by the
extension mechanism corresponds directly to the class hierarchy of object-oriented languages.
The notions base type and superclass both represent the same concept. Messages and virtual pro-
cedures are out of the scope of ast. Virtual procedures or object specific procedures might be
simulated with procedure-valued attributes. Table 4 summarizes the corresponding notions of
trees (ast), type extensions, and object-oriented programming.

Table 4: Comparison of notions from the areas of trees, types, and object-oriented programming

trees types object-oriented programmingii
node type record type class
- base type superclass
- derived type subclass
attribute, child record field instance variable
tree node record variable object, instance
- extension inheritancec

c
c
c
c
c
c
c

c
c
c
c
c
c
c
c

4.7. Tree Grammars

Conventional tree grammars are characterized by the fact that all right-hand sides start with
a terminal symbol. They are used for the description of string languages that represent trees in
prefix form. ast specifications describe trees which are represented by (absolute) pointers from
parent to child nodes. If we shift the names of node types of ast specifications to the beginning
of the right-hand side and interpret them as terminals we arrive at conventional tree grammars.
That is exactly what is done by the tree/graph writer procedures. They write a tree/graph in
prefix form and prepend every node with the name of its node type. That is necessary to be able
to perform the read operation.

5. Summary

We presented the tool ast, a generator for abstract syntax trees, which supports the
definition and manipulation of graph-like data structures. The records which define a graph and
their relationships are specified by a formalism based on context-free grammars. The data struc-
tures may be decorated with attributes of arbitrary types. The tool generates a program module
containing a set of declarations to define the data structure and various procedures to manipulate
it. There are procedures to construct and destroy nodes or graphs, to read and write graphs from
(to) files, and to traverse graphs in some commonly used manners. The mentioned readers and
writers process ascii as well as binary graph representations.

The advantages of this approach are: record aggregates are provided which allow a concise
notation for node creation. It is possible to build trees by writing terms. The extension mechan-
ism avoids chain rules and allows, for example lists with elements of different types.
Input/output procedures for records and complete graphs are provided. The output procedures
and the interactive graph browser facilitate the debugging phase as they operate on a readable
level and know the data structure. The user does not have to attend to algorithms for traversing
graphs. He/she is freed from the task of writing large amounts of relatively simple code. All of
these features significantly increase programmer productivity.

11

References

[Bie89] F. Bieler, An Interpreter for Chandy/Misra’s UNITY, internal paper, GMD
Forschungsstelle an der Universit

..
at Karlsruhe, 1989.

[DMN70] O. Dahl, B. Myrhaug and K. Nygaard, SIMULA 67 Common Base Language -

Publication S-22, Norwegian Computing Center, Oslo, 1970.

[Gol84] A. Goldberg, Smalltalk-80: The Interactive Programming Environment, Addison
Wesley, Reading, MA, 1984.

[Gro88] J. Grosch, Generators for High-Speed Front-Ends, LNCS 371, (Oct. 1988), 81-92,
Springer Verlag.

[GrV88] J. Grosch and B. Vielsack, The Parser Generators Lalr and Ell, Compiler Generation
Report No. 8, GMD Forschungsstelle an der Universit

..
at Karlsruhe, Apr. 1988.

[Gro89] J. Grosch, Ag - An Attribute Evaluator Generator, Compiler Generation Report No.
16, GMD Forschungsstelle an der Universit

..
at Karlsruhe, Aug. 1989.

[Gro91] J. Grosch, Ast - A Generator for Abstract Syntax Trees, Compiler Generation
Report No. 15, GMD Forschungsstelle an der Universit

..
at Karlsruhe, Sep. 1991.

[JWM85] K. Jensen, N. Wirth, A. B. Mickel and J. F. Miner, Pascal User Manual and Report,
Springer Verlag, New York, 1985. Third Edition.

[Joh75] S. C. Johnson, Yacc — Yet Another Compiler-Compiler, Computer Science
Technical Report 32, Bell Telephone Laboratories, Murray Hill, NJ, July 1975.

[Knu68] D. E. Knuth, Semantics of Context-Free Languages, Mathematical Systems Theory

2, 2 (June 1968), 127-146.

[Knu71] D. E. Knuth, Semantics of Context-free Languages: Correction, Mathematical

Systems Theory 5, (Mar. 1971), 95-96.

[Lam87] D. A. Lamb, IDL: Sharing Intermediate Representations, ACM Trans. Prog. Lang.

and Systems 9, 3 (July 1987), 297-318.

[Mar90] M. Martin, Entwurf und Implementierung eines
..
Ubersetzers von Modula-2 nach C,

Diplomarbeit, GMD Forschungsstelle an der Universit
..
at Karlsruhe, Feb. 1990.

[NNG89] J. R. Nestor, J. M. Newcomer, P. Giannini and D. L. Stone, IDL: The Language and

its Implementation, Prentice Hall, Englewood Cliffs, 1989.

[Par88] J. C. H. Park, y+: A Yacc Preprocessor for Certain Semantic Actions, SIGPLAN

Notices 23, 6 (1988), 97-106.

[SDD86] J. T. Schwartz, R. B. K. Dewar, E. Dubinsky and E. Schonberg, Programming with

Sets - An Introduction to SETL, Springer Verlag, New York, 1986.

[WGS89] W. M. Waite, J. Grosch and F. W. Schr
..
oer, Three Compiler Specifications, GMD-

Studie Nr. 166, GMD Forschungsstelle an der Universit
..
at Karlsruhe, Aug. 1989.

[Wir85] N. Wirth, Programming in Modula-2, Springer Verlag, Heidelberg, 1985. Third
Edition.

[Wir88a] N. Wirth, Type Extensions, ACM Trans. Prog. Lang. and Systems 10, 2 (Apr. 1988),
204-214.

[Wir88b] N. Wirth, From Modula to Oberon, Software—Practice & Experience 18, 7 (July
1988), 661-670.

[Wir88c] N. Wirth, The Programming Language Oberon, Software—Practice & Experience

18, 7 (July 1988), 671-690.

1

Contents

Abstract .. 1

1. Introduction .. 1

2. Specification Language .. 2

2.1. Node Types .. 2

2.2. Children ... 2

2.3. Attributes ... 2

2.4. Extensions .. 3

2.5. Modules .. 3

2.6. Properties ... 4

2.7. Reversal of Lists .. 4

2.8. Target Code .. 4

2.9. Type Specific Operations ... 5

3. Generated Program Module and its Use .. 5

4. Related Research .. 8

4.1. Variant Records ... 8

4.2. Type Extensions ... 8

4.3. Context-Free Grammars .. 9

4.4. Attribute Grammars ... 9

4.5. Interface Description Language (IDL) .. 9

4.6. Object-Oriented Languages ... 10

4.7. Tree Grammars .. 10

5. Summary .. 10

References .. 11

